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Abstract. The current knowledge about fluctuation-induced long-ranged forces is summarized.
Reference is made in particular to fluids near critical points, for which some new insight has
been obtained recently. Where appropriate, results of analytic theory are compared with computer
simulations and experiments.

1. Introduction

Forces between particles are governed by fields which themselves can be considered as
composed of particles mediating the interaction by continuous exchange processes. Most
prominent in the macroscopic world are electromagnetic fields and gravitational fields. For
simplicity we specialize to electromagnetic forces here, but the line of argument sketched
out in the following is valid in general. Macroscopic bodies exert electromagnetic forces
on one another whenever they are charged, but if they are neutral all electromagnetic forces
apparently vanish. Casimir [1] was the first to realize that this is not quite correct, because the
electromagnetic field is fluctuating. These fluctuations may be due to quantum fluctuations at
zero temperature in vacuum or due to thermal fluctuations in a cavity which is in contact with a
heat bath. In any case the fluctuation spectrum, i.e., the energies which are associated with the
eigenmodes of the system and the form of the eigenmodes themselves are manifestly influenced
by thegeometryof the system. The geometry is given by an arrangement of surfaces which
impose boundary conditions on the fluctuating field and thus determine its mode spectrum.
The free energy, which contains all information about the thermodynamic properties of the
system, is essentially given by a sum over all modes and therefore the free energy will become
geometry dependent. If, for example, two uncharged metallic bodies are placed at a certain
distance in vacuum the free energy of the configuration depends on the shape of the bodies
and the distance between them. Therefore, there will be aneffective forceacting between the
bodies, which is given by the derivative of the free energy with respect to their distance. Note
that this force is a direct consequence of the influence of the bodies on the electromagnetic
fluctuation spectrum. Apart from the macroscopic length scales set by the geometry there are
no other length scales in the system which limit the maximum wavelength of the fluctuations
and therefore the force is governed by powers of the imposed length scales and scaling functions
of their ratios, i.e., the resulting force islong ranged. Due to the history of their discovery [1]
these forces are now known as Casimir forces and the influence of boundaries on the functional
form of the free energy is known as theCasimir effect. It should also be noted that the presence
of additional bodies in the above set-up modifies the force between any two of them, i.e., it is
not possible to express the Casimir effect as a sum of two-body contributions only.
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1.1. A classic example

There is a vast body of literature on the various aspects of the Casimir effect in electromagnetism
which are beyond the scope of this article. For a summary we refer the reader to review articles
dedicated to these subjects [2] and for a recent survey in a more general context we refer the
reader to chapter 3 of reference [3]. However, for the understanding of the mechanism and the
interpretation of the results it is instructive to demonstrate some of the fundamental physical
concepts by a simple example, which we callclassichere for its historic meaning.

Let us assume that we have two parallel perfectly conducting plates placed at a distance
L in vacuum. We further assume that the plates have an infinite lateral extension so that we
consider the thermodynamic limit with respect to the surface areaA of the plates and only
discuss the free energyF per unit area, i.e., we calculateF = limA→∞ F/A. Note thatL is
the only macroscopic length scale in the problem. The mode spectrum of the electromagnetic
field in this parallel-plate geometry is particularly simple. In three dimensions the wave vector
q = (p, kn) consists of a lateral componentp = (px, py) which is unconstrained by the
geometry and a discrete perpendicular componentkn = nπ/L for n = 1, 2, 3, . . . due to the
condition that the electric field vector at each of the metallic surfaces must be aligned with the
surface normal. A single mode is then characterized byp andn, and its energy level spacing
is given by

εp,n = h̄c
√
p2 + (nπ/L)2. (1.1)

The energy contentEp,n of a particular mode is given by its occupation numbermp,n =
0, 1, 2, . . . in the formEp,n = εp,n(mp,n + 1

2). The free energy per unit area is then given by
(see also reference [4] for a recent reconsideration of the Casimir effect at general temperature)

F =
∫ 3 d2p

(2π)2

N∑
n=1

εp,n + 2kBT
∫ 3 d2p

(2π)2

N∑
n=1

ln
[
1− exp(−εp,n/(kBT ))

]
(1.2)

wherekB andT denote the Boltzmann constant and the temperature, respectively. An additional
factor of two coming from the summation over the polarizations has already been included in
equation (1.2). The integration overp is carried out to an ultraviolet cut-off3 and the sum is
truncated at some maximum mode numberN . The ultraviolet cut-off parameter3 is typically
determined by the radius of the first Brillouin zone of the plate material. Ifa is the lattice
constant of the material we identify3 = π/a. The maximum mode numberN can be written
asN = L/b, whereb is also a microscopic length scale (see below).

ForT = 0 only the first term in equation (1.2) remains and this is the first example studied
by Casimir [1]. Here, we will discuss the high-temperature limitkBT � h̄c3, because this
allows us to illustrate some aspects of the calculations involved within continuum models like,
e.g., the Ginzburg–Landau model on a rather elementary level. For the more general case of
layered dielectrics at finite temperature (dispersion forces) we refer the reader to the classical
literature [5,6] and to reference [2]. To leading order in ¯hc3/(kBT ) we obtain

F = 2kBT
∫ 3 d2p

(2π)2

N∑
n=1

ln
εp,n

kBT
. (1.3)

Note that the integral and the summation in equation (1.3) are only meaningful for finite cut-
off parameters3 andN . However, we only need the final result in the limits3L � 1 and
N � 1. For simplicity we identifykBT ∼ h̄cπ/b to the order of magnitude which implies
3L � N , i.e.,b � a. The integral in equation (1.3) is elementary and the resulting terms
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can be arranged as

F = kBT

4π
32

N∑
n=1

{
2 ln

(
h̄c

kBT

nπ

L

)

+ ln

(
1 +

(
3L

nπ

)2)
+

(
nπ

3L

)2[
ln

(
1 +

(
3L

nπ

)2)
−
(
3L

nπ

)2]}
. (1.4)

The sum over the terms in the second line of equation (1.4) converges, so we can immediately
perform the limitN →∞ here. We obtain

F = kBT

4π
32

{
2 lnN ! + 2N ln

(
h̄c

kBT

π

L

)
+
∫ 1

0
ln

sinh
(
3L
√
x
)

3L
√
x

dx

}
(1.5)

where terms whichvanishin the limitN →∞ have already been dropped. In order to eval-
uate equation (1.5) further for largeN and3L, we employ Stirling’s formula and the series
expansion of the logarithm. With3 = π/a andN = L/b we obtain the final result

F = LπkBT
2a2b

[
ln

(
h̄c

kBT

π

b

)
− 1 +

πb

3a

]
+
πkBT

8a2

[
2 ln

(
a

b

)
+ 1

]
− kBT

L2

ζ(3)

8π
+ · · · (1.6)

whereζ(3) ' 1.202 is a special value of the Riemann zeta function and the dots indicate
contributions which are exponentially small in3L. All terms which vanish in the limit
N →∞ (b→ 0) have consistently been dropped.

The decomposition of the free energy per unit area given by equation (1.6) is a special
case of the general decomposition

F = LFb + Fs,a + Fs,b + δFab (1.7)

for a film with two surfaces of type a and b. The leading contribution toF is proportional to
L and it corresponds to thebulk contribution of the free energy. In our example it is given
by the radiation pressureFb between the plates. The second contribution to equation (1.6)
is independent ofL and it therefore corresponds to the sum of the surface free energies or
surface tensionsFs,a + Fs,b, where a= b in the above example. The third contribution varies
asL−2 and it corresponds to the fluctuation-induced long-rangedCasimir interactionbetween
the plates, which is the most prominent contribution to thefinite-sizepart δFab of the free
energy in our example. Note that the Casimir contribution isindependentof the microscopic
cut-off parametersa andb. Its absolute strength at a given distanceL and temperatureT is
governed by the numerical constant1 = −ζ(3)/(8π) ' −0.0478 which is usually called
theCasimir amplitude. The Casimir amplitude is negative here, so the Casimir force between
the plates isattractive. The Casimir interaction can be obtained in very elegant ways known
as zeta-function regularization, algebraic cut-off, or exponential cut-off schemes [7]. Their
equivalence with respect to the cut-off-independent Casimir interaction has been explicitly
shown for the example presented here [8]. For further details see also reference [9].

1.2. Critical phenomena and correlated fluids

The above example for the Casimir effect appears to be very specific at first sight, but the
functional form of the free energy given by equations (1.3) and (1.6) is far more general
than it seems. In fact, the underlying mechanism which leads to fluctuation-induced long-
ranged forces only requires a fluctuating field with geometric restrictions and a macroscopic
length scaleL imposed by the geometry as the only limiting factor for the wavelength of
the fluctuations. Any system which is at acritical point also meets this requirement. The
fluctuating field in this case is given by the order parameter, and each of the individual
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contributions to the free energy as given by equation (1.7) is a sum of aregular part and
singularpart which contains the critical behaviour of the system. Rightat the critical point
the correlation lengthξ is infinite, so the distanceL between the system boundaries provides
the only macroscopic length scale as required for the occurrence of long-ranged fluctuation-
induced forces. Above the critical point the correlation length is finite and therefore the ratio
ξ/L governs the range of these forces. The existence of Casimir forces in critical systems
was anticipated by Fisher and de Gennes [10] in the framework of the so-called distant-wall
corrections to critical profiles, where in many cases the Casimir amplitudes govern the leading
distant-wall correction term to the profile in the vicinity of one of the system boundaries.
For details and an extended list of further references the reader is referred to chapter 4 of
reference [3] and to reference [11].

It is important to realize that the Casimir amplitudes1 and the associated scaling functions
θ(L/ξ) that take the place of these amplitudes forfiniteL/ξ (see reference [3] and section 2)
areuniversal, i.e., they do not depend on microscopic details of the system under consideration.
Note, however, that the precise form of the scaling functionsθ depends on thedefinitionof
the correlation lengthξ . For systems with surfaces the concept of universality classes raises
the question of whether there issurfacecritical behaviour and to what extent it is governed by
universal surface critical exponents. During the 1980s this question was answered in favour of
the general ideas of critical behaviour and universality, i.e., microscopic surface properties are
indeed unimportant. One only has to specify the type ofboundary conditionwhich the surface
imposes on the order parameter. In this respect there are only three fundamentally different
surface universality classes[12]. In particular, the surface may enhance the order parameter
with the result that the system undergoes a second-order phase transition in the presence of
an alreadyorderedsurface (extraordinary transition, E). The surface may also suppress the
order parameter with the result that the system undergoes a second-order phase transition in
the presence of adisorderedsurface (ordinary transition, O). Finally, the surface and the bulk
may order at thesametemperature (special transition, SB), so the critical point of the system
is in fact amulticritical point. If the spatial dimensionalityd of the system is high enough
there are two options for the occurrence of surface order above the bulk critical temperature
Tc,b. The surface may orderspontaneouslyat a certain critical temperatureTc,s > Tc,b or the
surface may be orderedexternallyby the presence of asurface field. The bulk transition in
the presence of an externally ordered surface is called thenormal transition. However, it has
been shown recently by rigorous arguments that the normal and the extraordinary transitions
only differ by corrections to scaling, so both belong to the extraordinary surface universality
class [13]. Surface critical behaviour has already been extensively reviewed [12] (see also
chapter 2 of reference [3] for a short summary), so we refrain from giving further details here.

The distinction between the surface universality classes is vital for the Casimir forces,
because the Casimir amplitudes1 and the scaling functionsθ depend on them. The simplest
boundary conditions apart from periodic ones areDirichlet boundary conditions which suppress
the order parameter to zero at the surface. A system with these boundary conditions provides
a representation of the ordinary surface universality class. The first systematic field-theoretic
calculation of a Casimir amplitude was done by Symanzik [14] for this case. Starting
from equation (1.3) the above example essentially reproduces all necessary steps for such a
calculation at the one-loop level (Gaussian theory). In general, concepts of the field-theoretic
renormalization group are required which cannot be described here. The application of field
theory to the critical behaviour of finite systems is a field of ongoing research [15] which
has recently furnished unexpected results concerning the occurrence ofnonuniversalcritical
finite-size behaviour above the upper critical dimension [16]. For reviews about the general
concept of critical finite-size scaling the reader is referred to reference [17].
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Above the critical temperature the range of the Casimir force is always limited by the
correlation length, but below the critical temperature the situation may be different. In Ising-
like systems the correlation length is also finite belowTc,b and therefore the Casimir forces
have a finite range. If the system has a continuous symmetry, however,Goldstone modes
cause correlation functions of the order parameter to remain long ranged belowTc,b. The most
prominent examples areXY and Heisenberg ferromagnets which possess an O(N) symmetry
with N = 2 andN = 3, respectively, in contrast to the Ising ferromagnet(N = 1). In
other words, the correlation length of continuous ferromagnets remains infinite belowTc,b and
therefore Goldstone modes also give rise to fluctuation-induced long-ranged forces between
system boundaries. Fluids with this property are sometimes calledcorrelated fluids. The
most important examples with respect to experimental realizations are liquid4He below
the superfluid–normal transition [18] and nematic liquid crystals in the nematically ordered
phase [19], where fluctuations of the nematic director are responsible for the long-ranged
nature of the Casimir force. Near the phase transition to the isotropic phase, fluctuations of
the degree of nematic order and the degree of biaxiality generateshort-rangedcorrections to
the Casimir force [20].

In summary, we have mentioned three options for the occurrence of fluctuation-induced
long-ranged forces: the presence of long-ranged interactions (e.g., electromagnetism; see
section 1.1), the presence of critical fluctuations, and the presence of Goldstone modes. In
the following overview we will only consider the second option, i.e., systems in the vicinity
of critical points. In particular, recent progress in the theoretical understanding of critical
Casimir forces for all surface universality classes and especially for curved geometries will
be presented. Special attention is also paid to the comparison of Casimir amplitudes and
corresponding scaling functions with computer simulations and experiments, which are still
in progress at this time. Due to the limited scope of this article other interesting developments
in related areas will not be described in any detail and an apology is made in advance to
all authors whose work is not explicitly mentioned here. The remainder of this article is
organized according to the three main approaches to critical Casimir forces, namely analytic
theory, computer simulation, and experiments.

2. Analytic theory

The analytic theory of the Casimir effect in critical systems is based on the concept of finite-
size scaling [3, 17]. Exact solutions of model systems in statistical mechanics give only
limited access to the finite-size scaling functions, because they are mainly restricted to two-
dimensional systems. Ind > 3 dimensions only the spherical model can be analysed in a
rigorous fashion [21] which has recently been done with special regard to the film geometry in
d = 3 dimensions [22, 23]. Despite their limitations exact solutions provide valuable insight
into the structure of the scaling functions and sometimes the results ford = 2 can be used to
improve estimates obtained by approximative methods ford = 3 (see section 3 of reference [3]
and below).

The concept of finite-size scaling is a natural extension of the principle ofscale invariance
to critical systems with geometric constraints on macroscopic length scales. The principle of
scale invariance itself may be viewed as a special case of the more general principle ofconformal
invariance(see section 3 of reference [3] and reference [24]). Conformal invariance implies
the equivalence of systems with boundaries atT = Tc,b if these systems can be mapped onto
one another by a conformal transformation. The principle of conformal invariance holds in any
dimension, but it is particularly powerful ford = 2 due to the exceptionally large number of
conformal mappings in this case (large conformal group; see reference [24]). Note that scale
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transformations are just very special conformal mappings. In the framework of conformal
field theory thestress tensorplays a key role [24,25]. Here we only mention that the thermal
average of the stress tensor yields the local Casimir force in a critical system and therefore the
stress tensor provides a very important tool in the analytic theory of the Casimir effect. In fact,
most of the Casimir amplitudes ford = 2 have been obtained from conformal field theory
rather than exact solutions (see section 3 of reference [3] and reference [24]).

Many of the experimentally relevant results have been obtained from a field-theoretic
analysis of the well-known Ginzburg–Landau HamiltonianHwith geometric constraints which
can be decomposed according toH = Hb +Hs +He. The bulk contributionHb is given by

Hb =
∫
V

ddx

[
1

2
(∇ ·Φ)2 +

τ

2
82 +

u

4!
(82)2 −H ·Φ

]
(2.1)

for systems characterized by anN -component order parameterΦ = (φ1, . . . , φN) confined to
a volumeV , whereN = 1, 2, 3 characterize the Ising,XY , and Heisenberg universality class,
respectively. The parametersτ andH correspond to the bare reduced temperature and external
field. The physical (renormalized) reduced temperature and external field will be denoted by
t andh in the following. The surface contributionHs can be written as

Hs =
∫
S

dd−1x
[ c

2
82 −H1 ·Φ

]
(2.2)

wherec andH1 correspond to the surface enhancement and the surface field, respectively [12].
Note that the surfaceS may consist of several disjoint parts. The last contributionHe
contains edge and curvature contributions to the HamiltonianH which were first considered
in reference [14] within the framework of the renormalization group. For experiments the
ordinary transition(c = ∞) and the extraordinary transition (e.g.,c = −∞; see also
reference [13]) are the most important cases. NeitherHs nor He needs to be considered
here in any detail, because their effect is completely contained in the boundary conditions for
the order parameterΦ. We will therefore restrict the following discussion to the ordinary and
the extraordinary surface universality class and to periodic boundary conditions.

2.1. The spherical model

The spherical model can be considered as theN →∞ limit of O(N)-symmetric classical spin
models and it can also be expressed as theN →∞ limit of equations (2.1) and (2.2). We only
summarize the most recent results here; for a brief overview the reader is referred to section 2.2
of reference [3] and to reference [21]. In the presence of an external fieldh and for sufficiently
small values of the reduced temperaturet = (T − Tc,b)/Tc,b thesingularcontributionδfab to
the finite-size partδFab of the free energy per unit area in a film geometry (see equation (1.7))
in d dimensions can be cast into the scaling form [22]

δfab(t, h, L) = kBTc,bL−(d−1)θab(tL
1/ν, hLβδ/ν) (2.3)

near the critical point given byt = 0 andh = 0, where ab indicates the combination of
surface universality classes at the two surfaces. The critical exponentsν andβ characterize
the temperature dependence of the correlation lengthξ ∼ t−ν , t > 0, and the order parameter
(spontaneous magnetization)m ∼ (−t)β , t < 0, for h = 0, respectively. The exponentδ
characterizes the functional dependence of the magnetizationm ∼ |h|1/δ on the external field
h for t = 0. The form of the scaling arguments in equation (2.3) is imposed by the principle of
scale invariance. They can be obtained by observing thatL/ξ is equivalent to the first scaling
argument andL/ξh, whereξh ∼ h−ν/(βδ) is the correlation length for finite fieldh at t = 0, is
equivalent to the second scaling argument. For nearest-neighbour interactions ford = 3 the
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critical exponentsν, β, andδ of the spherical model are given byν = 1,β = 1/2, andδ = 5.
The special value1ab≡ θab(0, 0) of the scaling function is the Casimir amplitude. In units of
kBTc,b the Casimir force

Kab≡ − ∂

∂L
δfab

is characterized by the corresponding scaling form

Kab(t, h, L) = L−dKab(tL
1/ν, hLβδ/ν) (2.4)

where the scaling functionKab is given by

Kab(x, y) = (d − 1)θab(x, y)− 1

ν
x
∂

∂x
θab(x, y)− βδ

ν
y
∂

∂y
θab(x, y). (2.5)

The universal scaling functionsθab andKab have been investigated recently for periodic
boundary conditions ab= per [22, 23]. Forh = 0 the scaling functionsθper (x, 0) and
Kper(x, 0) are both negative and increase monotonically withx, i.e., unlike the scaling
functions in Ising-like systems they do not have a minimum in the vicinity ofT = Tc,b
(x = 0) [22]. For x → +∞, both scaling functions decay to zero exponentially, whereas
for x → −∞, Kper(x, 0) → −ζ(3)/π ' −0.382. This behaviour is due to the presence of
Goldstone modesin the spherical model belowTc,b. For finite values ofh (y 6= 0) the scaling
functionsθper (x, y) andKper(x, y) again decay exponentially asL → ∞ [22]. Moreover,
both scaling functions also decay exponentially fory →∞ atx = 0. The Casimir amplitude

1per = θper (0, 0) = −2ζ(3)

5π
= −0.153 05. . . (2.6)

can be obtained exactly [23] and numerically it is very close the best available estimates for
the Ising model ford = 3 (see table 1 in section 3). It has also been shown rigorously that
the scaling functionθper (x, y) is a monotonically increasing function of each of its arguments
as long as the temperatureT is in the vicinity ofTc,b [23]. However, thehypothesisthat this
statement is true foranynearest-neighbour O(N)-symmetric spin model forN > 2 [23] cannot
be substantiated so far (see below).

2.2. The Ginzburg–Landau model

2.2.1. Film geometry. The film geometry has also been reinvestigated for the Ginzburg–
Landau model for the case of the extraordinary surface universality class [26], which is of
particular interest for experiments with critical binary liquid mixtures. The scaling functions
Kab(x, 0) in zero external field have been determined within mean-field theory for infinitely
strong surface fieldsh1 andh2 which enclose an arbitrary angleα betweenα = 0 (parallel
surface fields) andα = π (antiparallel surface fields). For Ising-like systems onlyα = 0 and
α = π can be realized and we refer to these cases as ab= ++ and ab= +−. The Casimir
amplitude is negative forα = 0 and positive forα = π ; it changes sign atα = π/3 [26].
Accordingly, the scaling functionK++(x, 0) is negative and the scaling functionK+−(x, 0) is
positive for allx within mean-field theory, but it seems very likely that this is also true beyond
mean-field theory. The functional form ofK++(x, 0) andK+−(x, 0) is illustrated in figure 1,
where the normalization of reference [26] has been used. Note that both scaling functions
take their extremal values at nonzerox, which makes them qualitatively very similar to the
corresponding scaling functions for an Ising strip ford = 2, which can be solved exactly [27].

The one-loop corrections to the mean-field behaviour are very hard to obtain and at present
they only exist for the Casimir amplitudes in the form of theε-expansion, whereε = 4− d.
The numerical quality of theε-expansion when extrapolated toε = 1 is very poor, so exact
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Figure 1. Scaling functionsK++(x, 0) (solid line) andK+−(x, 0) (dashed line) taken from figure 1
of reference [26]. Thex-range influenced by the bulk critical pointx = 0 is very broad and the
asymptotic decay forx →±∞ is dominated by an exponential. Note thatK++(x, 0)andK+−(x, 0)
take their extreme values atx ' 10 andx ' −25, respectively.

results ford = 2 have been included in order to obtain an interpolation formula for the Casimir
amplitudes ford = 3. The values for1++,1+−, and1O+ obtained in this way agree reasonably
well with Monte Carlo estimates (see section 3) [26]. Theε-expansion for1++ and1+− has
recently received some independent confirmation from local functional methods [28] which
also provide reliable numerical estimates ford = 3 (see table 1 in section 3).

Apart from usual critical points, for which the upper critical dimension isdu = 4,
tricritical points in liquid mixtures with more than two components [29] and in3He–4He
mixtures (see section 6 of reference [3]) also provide an opportunity for experimental tests
of the Casimir force. A theoretically appealing feature of a tricritical point is that its upper
critical dimension isdu = 3, so exact results ford = 3 can be obtained essentially from
a mean-field or a Gaussian theory. If, for example, Dirichlet boundary conditions are the
correct ones for a3He–4He mixture in a film at the tricritical point, then the Casimir amplitude
1OO = −ζ(3)/(8π) ' −0.0478 given in equation (1.6) is also the right one for this system.
There is, however, some debate concerning the correct boundary conditions for tricritical
3He–4He mixtures [29]. The result obtained for1++ at a tricritical point ford = 3 contains a
logarithmic factor which is absent below the upper critical dimensiondu and which introduces
a dependence on a microscopic length scale into the Casimir amplitude [29]. This dependence
is very weak and1++ at tricriticality is expected to be about seven times larger than the
corresponding amplitude at a usual critical point [29].

2.2.2. Curved geometries.In view of experimental set-ups for, e.g., atomic force microscopy
it is desirable to consider geometries other than films, because two plates cannot be kept parallel
accurately enough during force measurements. Curved geometries like a sphere in front of a
planar wall or two spheres are much more convenient to control experimentally and are also
much closer to reality in, e.g., colloidal suspensions [30] (see also reference [31]). Some
theoretical effort has therefore been made on the investigation of these curved geometries,
where conformal invariance considerations have proved to be a very powerful tool at the
critical point [32]. If Fab(r, R1, R2) denotes the free energy of a critical fluid in which two
spheres with radiiR1 andR2 at a centre-to-centre distancer > R1 + R2 are immersed, then
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the Casimir interactionδFab takes the scaling form [32]

δFab(r, R1, R2) ≡ Fab(r, R1, R2)− Fab(r = ∞, R1, R2) = kBTc,bFab(κ) (2.7)

where ab denotes the combination of surface universality classes andκ is the conformally
invariant cross ratio

κ = (2R1R2)
−1|r2 − R2

1 − R2
2|. (2.8)

Note that the cases of two separate spheres in an unbounded critical medium and a single
sphere inside a critical medium of spherical shape are conformally equivalent and are therefore
governed by the same universal scaling functionFab(κ) [32]. For largeR1 andR2 at fixed
surface-to-surface distanceD = r−R1−R2, one obtains from the limit of parallel plates [32]

δFab(r, R1, R2) = kBTc,bSd1ab[2(D/R1 +D/R2)]
−(d−1)/2 (2.9)

whereSd is the surface area of the unit sphere ind dimensions and1ab is the Casimir amplitude
for parallel plates. In the opposite limitr � R1, R2 the presence of the spheres can be taken
into account by the small-sphere expansion [32] which yields

δFab(r, R1, R2) = −kBTc,b A
ψ
aA

ψ

b

Bψ

(
R1R2

r2

)xψ
(2.10)

whereψ = φ is the order parameter if both a= b = E indicate the extraordinary surface
universality class. In this case the scaling exponentxψ is the scaling exponent of the order
parameterxφ = β/ν ('0.517 for the Ising model ford = 3). If only one of the surfaces
is not characterized by the extraordinary surface universality class, the operatorψ is given
by the local energy densityφ2 andxψ is the corresponding scaling exponentxφ2 = d − 1/ν
('1.41 for the Ising model ford = 3). The amplitudesAψa andAψb are the amplitudes of the
critical profiles〈ψ(z)〉s∞/2 = Aψs (2z)−xψ , s = a, b, of the operatorψ in a semi-infinite system
bounded by a planar surface of types. The amplitudeBψ is the amplitude of theψψ-correlation
function in unbounded space. Although none of these amplitudes is universal individually, their
combination in equation (2.10) is universal and its value for various surface types is exactly
known for the Ising universality class ford = 2. In d = 4− ε dimensions estimates can
be calculated from a renormalization group analysis of the Ginzburg–Landau model [32].
Note that equations (2.7), (2.9), and (2.10) only hold at the critical point. The Casimir
interaction according to equation (2.10) is in fact very long ranged. For the extraordinary
surface universality class it decays about as slowly as the Coulomb interaction. In all other
cases the decay is faster, but it is still slower than the decay of, e.g., dipolar interactions.

The full functional form of the scaling functionsF++(κ), F+−(κ), F+SB(κ), andF+O(κ)

has been calculated within mean-field theory from the stress tensor in the concentric sphere
geometry [33]. As for the case of parallel plates,F++ and F+SB are negative (attractive
Casimir force), whereasF+− andF+O are positive (repulsive Casimir force). The boundary
conditions ab= OO, O SB, and SB SB have been treated within the Gaussian model, where
FOO(κ) = FSB SB(κ) < 0 andFO SB(κ) > 0 has been found. Although the analytic inform-
ation from mean-field or Gaussian theory is quite limited, the combination of these results with
exact results ford = 2 yields fairly reliable estimates for ab= ++, +−, +O, and OO within the
Ising universality class ford = 3 [33]. Higher-order calculations beyond the mean-field or the
Gaussian approximation, respectively, for the concentric geometry are extremely demanding
and results are not available. Finally, we note that the sphere–planar-wall (SPW) geometry
can also be obtained from the concentric geometry by a conformal mapping [33].

So far, conformal invariance could be used to obtain the scaling functions of the Casimir
interaction for various geometries with spherical surfaces. If the correlation lengthξ is
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finite, conformal invariance no longer holds. Moreover, if all length scalesξ , r, R1,
andR2 are comparable, small-sphere expansions cannot be made any longer and a new
calculation is required for every geometry. In this case even mean-field results can only
be obtained numerically [34]. So far, this has only been done in detail for the SPW geometry
(R1 = R,R2 → ∞,D = r − R1 − R2 = constant) with ++ boundary conditions and
at arbitrary temperature near the critical point for Ising-like systems [34]. We restrict the
discussion to the caseT > Tc,b, where the correlation lengthξ+ = ξ0

+ t
−ν governs the decay of

the order parameter correlation function in real space. The Casimir force can be cast into the
scaling form [34]

K++(t,D,R) = kBTc,b

R
K+

++(x+ = D/ξ+, y+ = R/ξ+) (2.11)

where a corresponding scaling functionK−++(x−, y−) governs the scaling behaviour of the
Casimir force belowTc,b. The scaling functions are obtained from the mean-field evaluation
of the stress tensor which requires the knowledge of the order parameter profile within mean-
field theory. The order parameter profile is obtained from a numerical solution of the Euler–
Lagrange equation for equation (2.1) in the presence of parallel and infinite surface fields
which dictate the boundary conditions. The functional form ofK+

++(x+, y+) is illustrated in
figure 2. As for the case of parallel plates, the Casimir force is attractive and takes its maximum
value aboveTc,b. The true position of the maximum is somewhat concealed in figure 2 due to
the normalization factor15/2, which is required in order to absorb the divergence ofK+

++ for
1 = D/R→ 0. In this limit the Derjaguin approximation becomes valid, where the Casimir
force is represented as an integral over parallel-plate contributions. Each of these ‘parallel
plates’ in thed-dimensional SPW geometry is an infinitesimal annulus of width dρ and radius
ρ which is located on the surface of a paraboloid in order to approximate the sphere near the
wall. The distance of one of these annuli from the wall is then given byL(ρ) = D +ρ2/(2R),
where the integration is performed fromρ = 0 toρ = ∞ [34]. Note that this approximation
is only valid for forces which decay sufficiently fast asL(ρ) → ∞. The amplitude of the
Derjaguin approximation to the Casimir force atT = Tc,b is indicated by the open circle in
figure 2, where all solid lines meet. The dashed line corresponds to the small-sphere expansion

0.0 2.0 4.0 6.0 8.0
x+

0.0

8.0

16.0

24.0

−  u
* 
∆5/

2  K
+ 
(x

+ 
, y

+ 
)

y+ = 1

y+ = inf

y+ = 1/5 ∆ = D/R
y+ = R/ξ+ 

x+ = D/ξ+ 

Figure 2. Scaling functionK+
++(x+, y+) as a function ofx+ for various values ofy+ (solid lines).

The prefactor15/2 absorbs the divergence of the scaling function in the limit1 → 0, where
the Derjaguin approximation becomes valid (see the main text). The fixed-point valueu∗ of the
renormalized coupling constant is required as an additional normalization due to the mean-field
character of the calculation. The dashed line corresponds to the small-sphere expansion, which is
shown here fory+ = 1/5. The exponential decay of the scaling function sets in atx+ ' 4.
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to leading order, wherey+ = 1/5 has been used instead of the correct choicey+ = 0, for which
a factor12 is required for proper normalization [34].

The presence of small external fields can be used to drive, e.g., a critical binary liquid
mixture slightly away from the critical concentration. Within the small-sphere expansion
the Casimir energy between two spheres (colloidal particles) turns out to be nonsymmetric
with respect to deviations from the critical concentration, such that the Casimir force is
enhanced when the concentration of the component preferentially adsorbed by the colloids
is reduced [34]. This asymmetry is consistent with the asymmetry found experimentally in the
flocculation phase diagram of colloidal suspensions [30].

The concentric sphere geometry for ++ boundary conditions has also been considered
at tricritical points [29], where the principle of conformal invariance can be used as well
(see reference [33]). The expressions for the Casimir forces in the different geometries are
similar to the ones obtained for critical points [33] apart from the logarithmic dependence
on a microscopic length scale. The scaling function of the Casimir force depends on the
conformally invariant cross ratio given by equation (2.8). In the range of distancesD where
force measurements with the atomic force microscope appear to be feasible, both Casimir
and van der Waals forces are essentially governed by the parallel-plate limit of the curved
geometries studied here [29]. Corresponding investigations of the Casimir forces away from
the tricritical point have apparently not been performed.

Finally, we mention that a diluted polymer solution may also serve as a critical medium
which mediates long-ranged forces between, e.g., colloidal particles [35]. Systematic invest-
igations, however, are still at an early stage and the description of these is beyond the scope of
this article.

3. Computer simulation

Computer simulations of forces in liquid films have been performed in the past primarily
with regard to the microscopic mechanisms of friction, adhesion, and lubrication, where both
Monte Carlo [36] and molecular dynamics methods [37] have been used (see reference [6]
for background material and more details). With regard to the Casimir force in critical or
correlated fluids the situation is less satisfactory. The computational effort involved in such
calculations is substantial and consequently only very few Monte Carlo studies of the critical
Casimir effect exist. Only rectangular geometries have been considered so far ford = 3,
because the currently available system sizes do not provide sufficient resolution to investigate
curved geometries.

3.1. Casimir amplitudes

The first systematic attempt to measure the Casimir amplitudes of Ising and Potts models in a
film geometry is based on a splitting procedure for lattice modelsatcriticality [38]. The systems
containMd−1 × L lattice sites, where an aspect ratio ofM/L = 6 turns out to be sufficient
to approximate the film geometry. In the lateral directions periodic boundary conditions
are always applied. A seam is introduced into the system Hamiltonian, which continuously
weakens existing bonds and simultaneously establishes new bonds until the lattice is cut into
two halves of sizeMd−1×L/2. Histograms taken in the seam energy give access to the change
of the free energy as a function of the seam strength [38], which finally yields the total change
of the free energy when the lattice is cut in two. For periodic boundary conditions this method
yields the Casimir amplitude1per directly. For other boundary conditions the knowledge of
1per is required as input information [38]. The method works very well ford = 2 for critical
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Potts models withq = 2, 3, and 4 and has subsequently been applied to the Ising model for
d = 3 with periodic boundary conditions [38] and with surface fields [26]. A summary of
the currently available estimates for the Casimir amplitudes from various sources is displayed
in table 1 which includes older Migdal–Kadanoff estimates taken from reference [39]. Apart
from the well known numerical uncertainties regarding the extrapolation of theε-expansion
and the Migdal–Kadanoff renormalization scheme, the agreement between the estimates for
each of the amplitudes is encouraging. Especially for1++ and1+−, where theε-expansion
and the Migdal–Kadanoff scheme are particularly unreliable, the other estimates are fairly
consistent. There are still some prospects for improving the Migdal–Kadanoff estimates also
for these cases, but final results are not yet available [40]. It would also be desirable to obtain
estimates for the Casimir amplitudes from a field theoretic calculation ind = 3 dimensions
directly, but attempts in this direction have not yet been made. The Monte Carlo estimates
for 1++ and1+− are obtained by extrapolating the individual data to infinite lattice size [26].
For1+− this works rather well, but for1++ substantial systematic uncertainties remain and
additional data for larger systems are required to obtain a reliable extrapolation (see figures 4
and 5 in reference [26]). At present local functional methods as set up in reference [28] seem
to provide the most reliable estimates for1++ and1+−, because the dimensional dependence
of these amplitudes appears to be captured rather well by the local free-energy functional.
Finally, we note that the Casimir amplitudes may also be accessible by exploring the order
parameter distribution at the critical point [41]. So far this method has only been used for fully
finite cubic geometries; generalizations to other geometries have not yet been explored.

Table 1. Casimir amplitudes for the Ising universality class ford = 3. The values labelledε = 1
are obtained by extrapolating theε-expansion forN = 1 toε = 1 [26]. The values labelledd = 3
are obtained from Padé-type approximants ford = 3 (ε = 1) [26]. The Monte Carlo estimates
obtained from the algorithm presented in reference [38] are labelled by ‘MC’. Statistical errors (one
standard deviation) are indicated by the figures in parentheses. The last two lines show estimates
taken from references [39] and [28].

1per 1O,O 1+,+ 1+,− 1SB,+ 1O,+

ε = 1 −0.1116 −0.0139 −0.173 1.58 −0.093 0.165
d = 3 −0.1315 −0.0164 −0.326 2.39 0.208
MC −0.1526(10) −0.0114(20) −0.345(16) 2.450(32) 0.1873(70)
Reference [39] −0.015 0 0.279 0.017 0.051
Reference [28] −0.428 3.1

3.2. Off-lattice models and the wetting scenario

A great drawback of the Monte Carlo method introduced in reference [38] is that it cannot be
generalized to temperaturesT 6= Tc,b. The method is based on the measurement of free-energy
differences, which correspond to linear combinations of the scaling functions at different
scaling arguments forT 6= Tc,b. Data of extremely high accuracy would be required to
disentangle the individual contributions to the measured free-energy difference. An alternative
approach is to mimic the complete wetting scenario (see reference [42]) near the critical end-
point of the demixing transition in a binary liquid mixture in a computer simulation [43]. The
order parameter in this case is the concentration of the mixture (N = 1, Ising universality
class) rather than the density difference between liquid and gas, which is usually taken as the
order parameter near the liquid–vapour critical point. In fact, temperature and pressure are
adjusted such that the mixture is in its vapour phase very close to liquid–vapour coexistence
but far away from the liquid–vapour critical point. The interplay between the interparticle
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potential and the interaction between the particles and an external wall (substrate) may lead
to the formation of a macroscopic liquid wetting layer of thicknessL on the substrate at some
temperatureTw below the liquid–vapour critical point [42]. The problem in the preparation of
such a complete wetting layer for a binary mixture is to find a system, i.e., parameter values for
a simulation, such that the critical end-point of the demixing transitions isinsidethe complete
wetting regime, where the macroscopic wetting layer remains stable (see reference [42] for
more background information on wetting transitions). The Casimir effect associated with the
critical demixing transition in a liquid layer of thicknessL can then be studied. The suggestion
of probing the Casimir effect in complete wetting layers near critical end-points was first made
by Nightingale and Indekeu [44] and was later worked out in more detail, as the first estimates
for the scaling functions of the Casimir force became available [45] (see also section 6 of
reference [3]). The main objective of such a simulation, however, is to obtain more insight
into the Casimir effect in a more realistic off-lattice model with Lennard-Jones interactions,
which would be the typical situation in an experiment [43]. Simulations have been performed
for a symmetric binary liquid characterized by the Lennard-Jones interparticle potential

uij (r) = 4εij

[(
σij

r

)12

−
(
σij

r

)6
]

(3.1)

for two particle speciesi, j = 1, 2, where the choicesσij = σ for the hard-core parameters
andε11 = ε22 = ε, ε12 = 0.7ε for the well depth parameters have been made. Note that
with these choices the system is invariant under the species exchange 1↔ 2 and therefore the
chemical potentials of both species have been set equal,µ1 = µ2 = µ, from the outset. The
simulations are performed on a box of sizeP 2 ×D, where periodic boundary conditions are
applied in thex- andy-directions and two hard walls are specified in thez-direction, one at
z = 0 and one atz = D. The wall atz = 0 is characterized by the attractive potential

V (z) = εw
[

2

15

(
σ

z

)9

−
(
σ

z

)3
]

(3.2)

which actsequallyon the particle species [43]. The interparticle interactions are truncated
at Rc = 2.5σ , whereas no range cut-off is employed forV (z). The phase diagram of the
system is spanned by the parametersµ/kBT , ε/kBT , andεw/kBT . The system sizes used
areP = 12.5σ , 15σ , and 17.5σ , whereD = 40σ in all cases [43]. The parameters are
chosen such that (i) a complete wetting layer forms on the substrate and (ii) the end-point
of the critical demixing transitions is inside the complete wetting regime (see above). In
order to obtain a sufficiently thick wetting layer(L > 10σ) the undersaturation of the vapour
δµ/µ must be tuned to about 10−3. The data acquisition is strongly hampered by large
fluctuations of the liquid–vapour interface position (capillary waves) which also lead to a
substantial slowing down of the algorithm. Furthermore, the data are strongly affected by
lateral finite-size effects, because the capillary-wave fluctuations also limit the lateral system
sizes attainable with reasonable computational effort [43].

The equilibrium thicknessL of the wetting layer (see also section 4) minimizes the eff-
ective interface potentialω(l) [42, 43] as a function of the test layer thicknessl, which is a
variational parameter in the spirit of mean-field theory. The effective interface potential is
given by

ω(l) = l(ρl − ρv) δµ + σwl + σlv + δω(l) (3.3)

whereρl andρv denote the liquid and vapour densities, respectively. The interfacial tensions
σwl between the wall(z = 0) and the liquid andσlv between the liquid and the vapour do
not depend onl. The last termδω(l) contains the contributions of all interactions across the
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wetting layer and it depends on the boundary conditions. By construction there are no surface
fields acting on the model liquid which break the 1↔ 2 symmetry between the particle
species, i.e.,H1 = 0 (see equation (2.2) forN = 1). However, the wall potential given by
equation (3.2) acts like anegativesurface enhancementc (see equation (2.2)), which supports
demixing near the surface, whereas the liquid–vapour interface acts as a free surface(c > 0)
due to the internal 1↔ 2 symmetry of the model liquid. The surface universality classes
should thus be characterized by the combination(ab) = (O+). AtT = Tcep, δω(l) is therefore
used in the form [43]

δω(l) = W

l2
+ kBTcep

(
1O+

l2
+

2l1per

P 3

)
(3.4)

where the Hamaker constantW ' 2.5kBTcep governs the van der Waals contribution to
the interaction potential and the Casimir amplitude1O+ ' 0.2 (see table 1) governs the
Casimir interaction for a symmetric liquid mixture [43]. Note that positive Casimir amplitudes
(repulsion) lead to a criticalthickening of the wetting layer, whereas negative Casimir
amplitudes (attraction) lead to a criticalthinning of the wetting layer. The last term in
equation (3.4) is governed by the Casimir amplitude1per ' −0.15. It provides an order-
of-magnitude account of the aforementioned lateral finite-size effects which can be treated as
a shift of the undersaturationδµ. In the limit P � l (film geometry), the critical thickening
of the wetting layer is given by [43]

Lc/L0 = (1 + kBTcep1O+/W)
1/3 (3.5)

whereLc = L(Tcep) andL0 is the equilibrium layer thickness outside the critical regime. The
measured film thicknessL(T ) versus temperature is shown in figure 3. The critical thickening
of the wetting layerLc/L0 − 1 for the largest system (lowest curve in figure 3) is of the
order of 3% which is in rough agreement with equation (3.5). The apparent reduction of
the critical thickening with increasing lateral system size can be explained semiquantitatively
by the lateral finite-size correction included in equation (3.4). Further studies of off-lattice
models like this are certainly desirable; however, algorithmic improvements for the treatment
of capillary waves will be indispensable for future progress.

3.3. The lattice stress tensor

The computer simulation of the complete wetting scenario is quite successful, but by design
it only gives an indirect account of the scaling functionsK of the Casimir force. As already
described in section 2, the most direct access to the Casimir force is given by the thermal average
of thestress tensorand it would therefore be most convenient to have a lattice expression for
the stress tensor available for spin models. Such expressions can indeed be obtained and
successfully used in Monte Carlo simulations for lattice models ford = 2 [46]. The basic
idea behind the construction of the stress tensor is the same as in continuum theory: one
calculates the response of the free energy to a nonconformal mapping of the system, e.g., an
anisotropicrescaling of the coupling constants. For example, one may chooseJx = Jx(λ),
Jy = Jy(λ) with Jx(0) = Jy(0) = J andJx(λ) = Jy(−λ) on a square lattice, such that the
critical temperature does not depend onλ. For the Ising model ford = 2 this procedure yields,
e.g., thexx-component of the lattice stress tensor at lattice site(i, j) in the form [46]

txx(i, j) = −J ′x(0)(Si,j Si+1,j − Si,j Si,j+1) (3.6)

whereJ ′x(0) is the derivative ofJx(λ) at the isotropic pointλ = 0. The thermal averages
〈txx〉 of equation (3.6) and〈Txx〉 of the stress tensor in conformal field theory are related
by 〈txx〉 = α〈Txx〉 up to corrections to scaling, whereα is exactly known for the 2D Ising
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Figure 3. Thickness of the wetting layer as a function of temperature in reduced Lennard-Jones
units along a path parallel to the liquid–vapour coexistence line. Data are shown for each of the three
system sizes studied. The results were obtained from multihistogram extrapolation of simulation
data accumulated at three points on this path, corresponding to temperaturesT = 0.946, 0.958,
0.97 (see reference [43]).

model. For periodic boundary conditions in a strip geometry, equation (3.6) can be used
to measure the Casimir amplitude1per (i.e., the conformal anomaly numberc) and two or
more scaling dimensions for the Ising model and other models if equation (3.6) is generalized
accordingly [46]. For lattice models ford = 2, conformal field theory provides sufficient
background information that the desired quantities can be extracted from elaborate fitting
procedures [46]. Although equation (3.6) can be readily generalized tod = 3, additional
information from conformal field theory, which is vital for the data interpretation ford = 2,
is no longer available. Furthermore,〈txx〉 still contains surface contributions for nonperiodic
boundary conditions, because the surface tensions will depend on the anisotropy parameterλ

even if the critical point does not. However, for periodic boundary conditions〈txx〉 is at least
proportional to the Casimir force and some preliminary studies for theXY model in anM2×L
geometry ind = 3 dimensions look promising [47], although high statistics is already needed
for small systems.

4. Experiments

Experimental verifications of the Casimir effect in critical liquids are exceedingly difficult,
because data of high accuracy are required and both samples and apparatus must be prepared
with great care. At present, two lines of approach are considered, namely the wetting scenario
sketched already in section 3 and direct force measurements by atomic force microscopes
(AFM).
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4.1. Wetting experiments

For a wetting experiment in the vicinity of a critical point a fluid is required which possesses a
critical end-point on the liquid–vapour coexistence line. One option for this set-up is provided
by 4He near its lowerλ-point [48]. For this system the interaction part of the effective interface
potential (see equations (3.3) and (3.4)) must be modified according to the universality class
of theλ-transition in4He (XY , N = 2). The boundary conditions at the two interfaces of the
wetting layer seem to be very well approximated by Dirichlet boundary conditions (O surface
universality class). This leads to [45,48]

δω(l) = W

l2

(
1 +

l

Lx

)−1

+
kBTλ

l2
θOO(tl

1/ν, δµ lβδ/ν) (4.1)

whereLx ' 193 Å denotes the crossover length to retardation [49], andθOO is the scaling
function of the Casimir potential for the ordinary surface universality class (see equation (2.3)).
Note thatW andLx depend on the dielectric properties of the adsorbate and the substrate.
From equations (3.3) and (4.1) one expects a criticalthinningof the wetting layer thickness,
becauseθOO < 0. Note that the second scaling argument ofθOO captures off-coexistence
effects due to the undersaturationδµ of the4He vapour. At theλ-point (t = 0, δµ = 0) one
hasθOO(0, 0) = 1OO ' −0.024 which results in a critical thinning of∼0.3% for standard
substrates like, e.g., copper [3,45]. In the experimental set-up a stack of five copper capacitors
is placed inside a cell which contains liquid4He at the bottom. The surfaces of the capacitor
provide the substrate potential (see equation (3.2)) and their elevationh in the gravitational
field controls the undersaturationδµ ∼ ρvgh of the 4He vapour. The layer thickness is
obtained from high-precision measurements of the capacitance of each of the capacitors as a
function of temperature. The wetting behaviour of4He is extremely sensitive to the surface
morphology of the copper plates. In particular, microscopic scratches and dust particles lead
to localized condensation of4He on the surface which results in an overestimation of the
thickness. Moreover, surface roughness leads to an enhanced surface area which also increases
the amount of liquid4He on the substrate. Even with the most advanced polishing techniques
these effects cannot be avoided completely and therefore also the experimental verification of
the DLP theory of dispersion forces [5] remains a challenge. Nevertheless, the experimental
data for the film thinning show a pronounced minimum well belowTλ which is given by the
specific valuexm = −9.2±0.2 of the first scaling argumentx = tL1/ν in equation (4.1). This
value coincides with the minimum of the scaling functionKOO(x, y) of the Casimir force with
respect tox. The experimental estimate ofϑ(x) ≡ KOO(x, y = 0) extracted from the data is
displayed in figure 4, which does not show the expected data collapse for the scaling function
KOO. On the contrary, a systematic trend in the data as a function of the elevationsh of the
capacitors is visible as shown in the inset of figure 4. One possible explanation may be given
by off-coexistence effects, which would require the second scaling variabley = δµLβδ/ν in
equation (4.1) for data collapse. If a linear dependence ofKOO ony is assumed, the deviations
from data collapse are indeed drastically reduced [48]. Another option is provided by the
introduction of a roughness correction factor as suggested in reference [18], which leads to a
similar improvement [48]. However, it is evident from figure 4 that there are no appreciable
deviations from data collapse forx > 0, where a quantitative prediction forKOO(x, y = 0)
exists [3, 45]. The comparison is displayed in figure 5 which shows reasonable agreement
between the data and the prediction. Finally, we note that a finite thinning effect remains
visible for temperatures further belowTλ, as one would expect from the presence of Goldstone
modes [18, 23]. The overall shape ofKOO is manifestly nonmonotonic in contrast to the
recently stated monotonicity hypothesis for O(N > 1)-symmetric spin models [23].
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Figure 4. Scaling functionϑ(x) ≡ KOO(x, 0) as a function ofx. The magnitude of the minimum
increases systematically with the heighth of the capacitor. The measured layer thicknessL is
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from reference [48]).
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Figure 5. A blow-up of the regionx > 0 in figure 4. Every other data point is shown. The solid
line shows the prediction from figure 9 in reference [45] (taken from reference [48]).

A second option for a wetting experiment in the vicinity of a critical end-point is provided
by binary liquid mixtures near the critical end-pointTcep (see section 3) of the line of second-
order demixing transitions [50] (see references [42, 45] for complete phase diagrams). The
physical situation is very much like that for4He near the lowerλ-point, except that both the
bulk and surface universality classes are different here. The second-order demixing transition
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is characterized by a scalar order parameter (concentration), so the system is in the Ising
(N = 1) universality class. The substrate material as well as the liquid–vapour interface,
which provide the boundaries of the system, usually show some preferential affinity for one
of the two components of the mixture; i.e., the concentration (order parameter) departs from
its critical bulk value in the vicinity of the surfaces. This phenomenon is known as critical
adsorption (see, e.g., reference [12]) and it is captured by theextraordinarysurface universality
class. In the experiment [50] a molecularly smooth (100) Si wafer (n-type, phosphorus doping)
covered with a SiO2 layer of∼2.0 nm thickness is used, which is suspended vertically inside
a Pyrex cell. The elevationh of the substrate above the bulk liquid at which the wetting
layer thickness is measured controls the undersaturation of the vapour. The reduction of
temperature gradients for wetting agents other than superfluid4He is a quite demanding
task and it substantially complicates the preparation of the cell and the sample [50]. In
this experiment two organic mixtures have been used, namely methanol + hexane (MH) and
2-methoxy-ethanol + methylcyclohexane (MM). In MH the methanol component is adsorbed
at the Si wafer, whereas hexane is adsorbed at the liquid–vapour interface of the wetting layer.
In MM the situation is similar: the 2-methoxy-ethanol is adsorbed at the Si wafer, whereas
the methylcyclohexane is adsorbed at the liquid–vapour interface. The wetting layers of both
mixtures are therefore characterized by the scaling functionsθ+− of the Casimir potential. The
interaction contributionδω(l) to the effective interface potentialω(l) in this case is assumed
to be of the form [50]

δω(l) = W

l2
− Ae−l/d +

kBTcep

l2
θ+−(tl1/ν, 0) (4.2)

where retardation and off-coexistence effects are neglected. The exponential contribution to
equation (4.2) is due to the presence of the hard wall, which structures the adsorbed fluid over
a molecular distanced. The critical temperatureTcep is about 300 K [50]. At the moment
only mean-field results [26] and exact results ford = 2 [27] exist for the scaling function
K+− of the Casimir force. In order to obtain reasonable estimates also ind = 3 dimensions,
at least the one-loop corrections are required, which only exist for1+− = 2K+−(0, 0) at the
moment (see reference [26] and table 1). From equation (3.5) and typical values forTcep and
the Hamaker constantW , one expects a critical thickeningLc/L0 > 2 of the wetting layer,
when the estimate1+− ' 2.4 (see table 1) is used. AsTcep is approached from above, a
critical thickening of the wetting layer consistent with this expectation has been found in the
experiment and the data forK+−(x, 0) are indeed consistent with scaling [50]. As a function of
the scaling variabley ≡ L/ξ+ the scaling functionϑ+−(y) ≡ K+−(x = (ξ+

0 y)
1/ν, 0) is shown

in figure 6. A comparison betweenϑ+−(y) at and away from the critical composition is shown
in the inset for MH. The shape ofϑ+−(y) shown in figure 6 resembles that of the mean-field
estimateK+−(x, 0) for x > 0 shown in figure 1. However, the Hamaker constantW and
therefore also the Casimir amplitude1+−, which have been extracted from the data, are much
smaller than anticipated. The reason for this discrepancy has not yet been fully understood.
One possible explanation could be that the parameters of the system are not in the complete
wetting regime, i.e., onlypartial rather than complete wetting [42] is achieved. Further studies
are currently under way.

4.2. AFM measurements

As already mentioned in section 3, the theoretical investigation of critical fluids in curved
geometries is,inter alia, motivated by the prospects of measuring the Casimir force directly
with an AFM. At the moment only exploratory results are available [51] which have been
obtained for the SPW geometry in liquid crystals (see references [19, 20]). In this study a
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Figure 6. Universal scaling functionϑ+,−(y), y = L/ξ+, for the critical Casimir force. The
symbols represent data at fixed elevationsh = 1.5 mm (diamonds),h = 3.3 mm (squares) for MM
andh = 3.4 mm (triangles),h = 6.3 mm (inverted triangles) for MH. In the inset the experimental
functionϑ+,−(y) for the system MH with the critical composition (squares), 5% excess hexane
(circles), and 10% excess hexane (triangles) at two different heights (3.5 mm (open symbols) and
6.0 mm (solid symbols)) on a silicon wafer is shown.

temperature-controlled AFM has been used to measure the force between a sphere mounted
on the cantilever tip of the AFM and a planar wall immersed in an 8CB liquid crystal near the
isotropic–nematic phase transition. Above the transition in the isotropic phase an attractive
force of the order of 10−10 N at a distanceD = 1 nm± 0.1 nm between the surface of the
sphere(R = 5 µm) and the wall is detected only when the two surfaces aremoving apart.
This phenomenon is similar to the capillary force in AFM microscopy and it is interpreted
as the adsorption of a nematically ordered layer of the liquid crystal on the surface of the
sensing probe [51]. Slightly above the transition to the nematically ordered phase an additional
attractive force of the order of 10−11 N is detected when the surfaces areapproachingone
another. This additional force is conjectured to be the Casimir force mediated by the onset
of Goldstone modes of the nematic director field in the ordered phase [19, 51], where the
boundary conditions are supplied by the type of anchoring of the nematic director on the
surfaces [19]. Further quantitative studies of Casimir forces in critical and correlated liquids
with this apparatus are certainly desirable. Finally, we note that the radiation pressure on a
dielectric sphere in the evanescent field of totally reflected light has recently been measured
using such AFM techniques [52].

5. Prospects for further investigations

The theoretical knowledge about Casimir forces in critical and correlated fluids which has
been accumulated during the last ten years has become so detailed that the stage is set for
experimental tests of various kinds. Wetting experiments near critical end-points have already
proved to be a powerful tool for accomplishing this goal for quite a variety of fluids. Further
studies in this direction are certainly highly desirable and the prospects for them are very
good despite the substantial experimental challenges that one has to face. From the existing
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theoretical work on curved geometries it has also become clear that the Casimir forces in critical
and correlated fluids are within reach of current AFM designs. Preparation of the samples and
temperature stabilization of the sample and the instrument again pose major challenges for
AFM force measurements; however, the prospects of probing the Casimir effect quantitatively
are also very good.

Conversely, the experimental approaches to the Casimir effect also pose new theoretical
challenges. The problem of substrate roughness in wetting experiments has already been
mentioned above and for the case of quenched roughness theoretical results already exist [18].
However, one of the boundaries of a wetting layer is a free liquid–vapour interface, which may
undergo large-scale fluctuations due to capillary waves. What kind of corrections capillary
waves as additional degrees of freedom impose on the critical Casimir potential is an open
question. Quantitative estimates of these corrections are not only important for experiments,
they would also aid the data interpretation of computer simulations for critical wetting layers.
To what extent off-coexistence effects influence experimental and numerical wetting layer data
is also a largely open problem. In this respect the recently explored numerical access to the
stress tensor of lattice models may prove particularly useful [46, 47]. Finally, it should be
mentioned that improvements of existing theoretical or numerical estimates for the scaling
functionKab of the Casimir force, in particular for the extraordinary surface universality class,
in various geometries are still needed in order to extract the Casimir effect from experimental
data as reliably as possible.

Although the history of the Casimir effect goes back more than half a century it has
remained an active field of research. This article can therefore only provide a snapshot of
current knowledge in this area rather than a complete picture. If this presentation could finally
help to trigger or direct new research work in this field, then its main purpose would be fulfilled.

Acknowledgments

The author gratefully acknowledges stimulating discussions with M H W Chan, S Dietrich,
R Garcia, M Kardar, B M Law, A Mukhopadhyay, and F Schlesener. Financial support for
this work has been provided through the Heisenberg programme of the Deutsche Forschungs-
gemeinschaft, which is also gratefully acknowledged. The author expresses his special thanks
to M H W Chan and R Garcia for providing copies of figures 4 and 5 and to B M Law and
A Mukhopadhyay for providing a copy of figure 6 prior to publication.

References

[1] Casimir H B G 1948Proc. K. Ned. Akad. Wet.51793
Casimir H B G andPolder D 1948Phys. Rev.73360
Casimir H B G 1953Physica19846
Sukenik C I, Boshier M G, Cho D, Sandoghdar V and Hinds E A 1993Phys. Rev. Lett.70560
Lamoreaux S K 1997Phys. Rev. Lett.785

[2] Plunien G, M̈uller B and Greiner W 1986Phys. Rep.13487
Mostepanenko V M and Trunow N N 1988Sov. Phys.–Usp.31965
Mostepanenko V M and Trunow N N 1997The Casimir Effect and its Applications(Oxford: Clarendon)
Elizalde E and Romeo A 1991Am. J. Phys.59711
Milonni P W and Shih M-L 1992Contemp. Phys.33313
Spruch L 1996Science2721452

[3] Krech M 1994The Casimir Effect in Critical Systems(Singapore: World Scientific)
[4] Kakazu K and Miyagi S 1998Prog. Theor. Phys.100687
[5] Lifshitz E M 1956Sov. Phys.–JETP2 73

Dzyaloshinskii L E, Lifshitz E M and Pitaevskii L P 1961Adv. Phys.10165



Fluctuation-induced forces in critical fluids R411

Sabisky E S and Anderson C H 1973Phys. Rev.A 7 790
Schwinger J, DeRaad L L and Milton K A 1978Ann. Phys., NY1151

[6] Israelachvili J N 1992Intermolecular and Surface Forces(New York: Academic)
[7] Elizalde E and Romeo A 1990Int. J. Mod. Phys.A 5 1653

Elizalde E 1990J. Math. Phys.31170
Kirsten K 1991J. Phys. A: Math. Gen.243281
Dolan B P and Nash C 1992Commun. Math. Phys.148139
Leseduarte S and Romeo A 1996Europhys. Lett.3479
Leseduarte S and Romeo A 1996Ann. Phys., NY250448

[8] Svaiter N F and Svaiter B F 1990J. Math. Phys.32175
Svaiter N F and Svaiter B F 1992J. Phys. A: Math. Gen.25979

[9] Elizalde E 1994J. Phys. A: Math. Gen.27L299
[10] Fisher M E and de Gennes P-G 1978C. R. Acad. Sci., ParisB 287207
[11] Eisenriegler E, Krech M and Dietrich S 1996Phys. Rev.E 5314 377
[12] Binder K 1983Phase Transitions and Critical Phenomenavol 8, ed C Domb and J L Lebowitz (London:

Academic) p 2
Diehl H W 1986Phase Transitions and Critical Phenomenavol 10, ed C Domb and J L Lebowitz (London:

Academic) p 76
Diehl H W 1997Int. J. Mod. Phys.B 113503
Diehl H W and Shpot M 1998Nucl. Phys.B 528595

[13] Burkhardt T W and Diehl H W 1994Phys. Rev.B 503894
[14] Symanzik K 1981Nucl. Phys.B 1901
[15] O’Connor D and Stephens C R 1994Phys. Rev. Lett.72506

Freire F, O’Connor D and Stephens C R 1994J. Stat. Phys.74219
Esser A, Dohm V and Chen X S 1995PhysicaA 222355
Esser A, Dohm V, Hermes M and Wang J S 1995Z. Phys.B 97205
Chen X S, Dohm V and Esser A 1995J. PhysiqueI 5 205
Freire F, O’Connor D and Stephens C R 1996Phys. Rev.E 53189
Chen X S, Dohm V and Talapov A L 1996PhysicaA 232375
Chen X S, Dohm V and Schultka N 1996Phys. Rev. Lett.773641

[16] Chen X S and Dohm V 1998PhysicaA 251439
Chen X S and Dohm V 1998Eur. Phys. J.B 5 529

[17] Barber M N 1983 Phase Transitions and Critical Phenomenavol 8, ed C Domb and J L Lebowitz (London:
Academic) p 145

Privman V 1994Finite Size Scaling and Numerical Simulation of Statistical Systemsed V Privman (Singapore:
World Scientific)

Privman V, Hohenberg P C and Aharony A 1991Phase Transitions and Critical Phenomenavol 14, ed C Domb
and J L Lebowitz (New York: Academic) p 1

[18] Li H and Kardar M 1991Phys. Rev. Lett.673275
Li H and Kardar M 1992Phys. Rev.A 466490
Kardar M 1999APS Centennial Mtg (Atlanta, GA, March 1999)talk

[19] Adjari A, Peliti L and Prost J 1991Phys. Rev. Lett.661481
Adjari A, Duplantier B, Hone D, Peliti L and Prost J 1992J. Physique2 487
Lyra M L, Kardar M and Svaiter N F 1993Phys. RevE 473456

[20] Ziherl P, Zumer S and Podgornik R 1998Braz. J. Phys.28267
Ziherl P, Podgornik R and Zumer S 1998Chem. Phys. Lett.29599

[21] Allen S and Pathria R K 1989Can. J. Phys.67952
Allen S and Pathria R K 1991Can. J. Phys.69753
Brankov J G and Tonchev N S 1990J. Stat. Phys.60519
Brankov J G and Danchev D M 1991J. Math. Phys.322543
Brankov J G and Danchev D M 1993J. Stat. Phys.71775
Danchev D M 1993J. Stat. Phys.73267

[22] Danchev D M 1996Phys. Rev.E 532104
[23] Danchev D M 1998Phys. Rev.E 581455
[24] Cardy J L 1987Phase Transitions and Critical Phenomenavol 11, ed C Domb and J L Lebowitz (London:

Academic) p 55
Itzykson C and Drouffe J-M 1992Statistical Field Theoryvol 2 (Cambridge: Cambridge University Press)

[25] McAvity D M and Osborn H 1993Nucl. Phys.B 406655



R412 M Krech

[26] Krech M 1997Phys. Rev.E 561642
[27] Evans R and Stecki J 1994Phys. Rev.B 498842
[28] Borjan Z and Upton P J 1998Phys. Rev. Lett.814911
[29] Ritschel U and Gerwinski M 1997PhysicaA 243362
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